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The central role of the binding and/or activation of dioxygen 
by copper(I) ions in a wide range of important processes in biology 
and catalysis has led to intense interest in the synthesis, 
characterization, and examination of the reactivity of CunO2 
complexes.' Relatively few such complexes have been definitively 
identified, however, and only two, [((TMPA)Cu)2(O2)] (PF6)2

2'3 

and [(TpiPr2Cu)2(02)],
2'4 have been characterized structurally 

by X-ray crystallography. The former complex contains a trans-
/i-l,2-peroxo ligand, while the latter has a planar dicopper(II)-
M-»?2:jj2-peroxo core that accurately models the dioxygen adduct 
of hemocyanin (Hc).5 Despite extensive studies of the reaction 
pathways followed by these and other less well-defined Cu/02 
adducts in synthetic and biological systems, our understanding 
of the relationship between their structural features and their 
reactivity with substrates remains rudimentary.1'6 In particular, 
insight into the mechanistic details of aliphatic hydrocarbon 
oxidations that involve Cu/02 species in proteins, such as those 
catalyzed by dopamine /3-monooxygenase (D/3M),7 peptidyl-
glycine a-amidating enzyme (PAM),8 and particulate methane 
monooxygenase (pMMO),9 has been limited by the relatively 
small number of synthetic copper-dioxygen complexes available 
for study and their general lack of reactivity with aliphatic C-H 
bonds. Here we report the preparation of a new dicopper(II)-
ji-7j2:7;2-peroxo complex and demonstrate unequivocally the 
cleavage of an sp3 C-H(D)bond by the Cu2O2 unit.10 

Treatment of solutions of [LCu(CH3CN)]CF3SO3 (L = 1,4,7-
triisopropyl-l,4,7-triazacyclononane)11,12 in CH2Cl2 or acetone 
with dry O2 at -78 0C resulted in the formation of red-brown 
[(LCu)2(O2)](CF3S03)2 (Scheme 1). The adduct was not 
perturbed by an N2 purge or application of vacuum at -78 0C, 
suggesting that O2 binding is essentially irreversible at this 
temperature. Assignment of a dicopper(II)-/t-7j2:ij2-peroxo struc
ture to the product is based on (i) manometric data [Cu:02 = 
2.2(2):!]; (ii) its UV-vis spectrum, which contains O2

2" -* Cu-
(II) charge transfer bands [Figure l;\max = 365 (e~ 11 000 M-1 
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cm-1), 510 (1000) nm]13 analogous to those of [(Tp^2Cu)2(O2)]
14 

and oxyHc;15 (iii) its EPR silence at 77 K, suggestive of 
antiferromagnetic coupling between Cu(II) ions; and (iv) its 
resonance Raman spectrum, which contains »<o-o at 722 cm-1 

[K0-O(18O2) = 680 cm-1; A^(16O2-
18O2) = 42 cm"1 = A ^ ] . This 

low vo-o value is consistent with a weak O-O bond6,15 and is 
similar to those of [(TpR2Cu)2(02)] (R = Ph, 759 cm-'; R = iPr, 
741 cm-1; R = Me, 731 cm-')4 and oxyHc (750 cm"1).16 

Additional evidence in favor of the presence of a peroxo ligand 
in the O2 adduct includes (i) identification of H2O2 (77% yield) 
by iodometric titration after addition of excess HBFvEt2O to the 
complex and (ii) generation of a UV-vis spectrum identical to 
that obtained upon addition of O2 to the Cu(I) starting material 
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Figure 1. UV-vis spectrum of [(LCu)2(Oz)] (CF3S03)2 and spectroscopic 
demonstration of the reversible nature of O2 binding. 

by adding aqueous H2O2 to a solution of the dicopper(II)-bis-
(M-hydroxo) complex [(LCu)2(OH)2](CF3SOs)2

12 in CH3OH at 
-78 0C. 

Although it appears on the basis of the data collected so far 
that [(LCu)J(O2)](CF3S03)2 and [(Tp112Cu)2(O2)] contain 
structurally similar ju-T/2:»72-peroxo units, key aspects of their 
reactivity differ. For example, in contrast to the TpR2 peroxo 
complexes,17 O2 binding to [LCu(CH3CN)](CF3SO3) is reversible 
upon warming under vacuum, as shown by the UV-vis cycling 
data shown in Figure 1. In addition, quantitative radical coupling 
of 2,4-di-fert-butylphenol was effected by the peroxo compound 
at -78 0C in the absence of uncoordinated O2 to cleanly afford 
[(LCu)2(OH)2](CF3S03)2 (Scheme 1). This efficient radical 
generation and coupling differs from the reactivity observed for 
[(TpMe2Cu)2(02)], which yields diphenoquinones under similar 
conditions,17 but is analogous to that reported for a putative "bent" 
^-jj2:rj2-peroxo complex.18 

Most intriguing were the results of experiments in which 
[(LCu)2(02)](CF3S03)2 was warmed without application of 
vacuum in the absence of external reagents, conditions which led 
to the formation of the hydroxo-bridged compound [ (LCu)2(OH)2] -
(CF3S03)2 as the major product (85% yield, Scheme l).19 

Decomposition of the peroxo complex perdeuterated at the 
isopropyl substituents yielded OD-bridged product (FTIR; KOD 
= 2653 cm-1, POH/POD = 1-35; calcd = 1.37), demonstrating 
conclusively that the H(D) atoms of the bridges are derived from 
the isopropyl groups of the triazacyclononane ligand. Analysis 
of kinetic data obtained by monitoring the decrease of the 510 
nm band of the dicopper(II)-peroxo complexes containing H-
and D-substituted isopropyl groups as a function of time over the 
temperature range 223-263 K revealed that the reaction to form 
[(LCu)2(OH)2] (CF3S03)2 was first-order with respect to the 
peroxo complex and that it exhibited a large primary isotope 
effect [kn/kz, = 18(1) at 298 K]20 with a minor temperature 
dependence described by Ai/* H = 13.5(5) kcal mol-1, AS*n = 
-12(1) eu, AH*D = 14.0(5) kcal mol"1, and AS*D = -16(1) eu 
(Figure 2). These data conclusively demonstrate that the rate-
determining step in the decomposition of the peroxo species 
involves cleavage of a C-H(D) bond of the isopropyl group(s), 
a transformation relevant to C-H activation processes mediated 
by Cu/02 species in proteins (cf. D/3M, PAM, and pMMO) that, 
to our knowledge, has not been demonstrated previously for a 
synthetic copper-peroxo complex.21 Reinaud and Theopold 
observed similar attack at the ligand isopropyl groups of a 
dicobalt-peroxo complex [(TpiPr2Co)2(02)]

22 but with signifi
cantly different kinetic parameters [AH*n = 16.4(5) kcal mol-1, 
AS'H = -12(1) eu, AH*D = 19.2(5) kcal mol"1, and AS*D = 
-8(1) eu]. These kinetic data were interpreted to indicate a 
substantial tunneling contribution to the reaction rate that is not 
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Figure 2. Eyring plot for the decompositions of [(LCu)2(O2)] (CF3SO3J2 
(H) and [(</2rLCu)2(02)](CF3S03)2 (D) in CH2Cl2 (see text for derived 
activation parameters). 

evident in our system.23 Nonetheless, a rate-determining step 
involving peroxo 0 - 0 bond cleavage in concert with (not prior 
to)24 two intramolecular H atom abstractions analogous to that 
proposed for the TpiPr2Co case (cf. transition state A) is consistent 
with the large ̂ HAD and negative AS* values we have measured.25 

Subsequent rapid trapping of the resulting tertiary alkyl radicals 
by solvent or CH3CN hydrogen atoms would account for the 
final product isolated. 
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Important aspects of biological copper-dioxygen chemistry 
are modeled by the work described here. Both structural and 
functional mimicry of Hc are demonstrated by the reversible 
binding of O2 to yield a dicopper(II)-/t-rj2:rj2-peroxospecies. Most 
significantly, the definitive characterization of an aliphatic C-H 
bond activation reaction by the Cu2O2 unit suggests that such 
moieties (or related species) in biological systems may be capable 
of directly attacking nonaromatic hydrocarbons, a mechanistic 
possibility for copper protein-catalyzed oxidations that should be 
considered in future synthetic and biochemical research. 
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